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Abstract
The Donnan membrane equilibrium, applied to the sedimentation–diffusion
(SD) equilibrium for charged colloids in gravity or an ultracentrifuge, yields
limiting laws for the SD density profile and the recently predicted macroscopic
electric field (van Roij 2003 J. Phys.: Condens. Matter 15 S3569) which
necessarily accompanies the colloid density gradient as is also illustrated by the
Donnan model. For SD equilibrium in an ultracentrifuge the radial ‘Donnan’
electric field accounts for the significant apparent mass reduction in the
low-salt limit already discussed by Tiselius (1926 Z. Phys. Chem. 124 449).
Several other aspects are discussed, such as the striking analogy between the
macroscopic Donnan condenser and the usual colloidal diffuse double layer.

1. Introduction

The renewed interest [1–5] in the sedimentation–diffusion (SD) equilibrium of colloids, i.e. the
density profile resulting from the competition between Brownian motion and gravity, has led
to an intriguing insight for charged particles. Theory [4] and simulations [1, 5] predict that
the SD equilibrium profile of non-interacting charged colloids may deviate strongly from the
‘barometric’ Boltzmann exponential due to the presence of a macroscopic electric field that
reduces the effective colloidal mass. Indications for such a field were reported by Biben and
Hansen [1] in Monte Carlo simulations of SD profiles. These simulations were performed
to explain the anomalous experimental SD profiles of Piazza et al [6] who already discussed
the possible presence of an electric field that reduces the effective colloid mass. In a recent
experimental study on well-defined, charged silica spheres in ethanol [3], an electric field was
mentioned as one of the very few options left to explain the enormous spatial extent of SD
profiles of the colloids under study, even at the very low densities where only a barometric
distribution on a much smaller length scale was expected.
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Van Roij [4] has provided the first clear theoretical explanation of the electric field and its
effect on SD profiles, an effect which may be drastic as confirmed by recent simulations [5].
Van Roij [4] concludes that at the level of non-interacting colloids an electric field should
indeed already be present and that it causes the presence of three characteristic regions in the
SD profile. The three regions, to be explained in more detail later, are region I with a ‘bare’
exponential profile with a decay length as if particles were uncharged, region III, which also
has an exponential profile but with a decay length increased by a factor of order z (the colloidal
charge), and an intermediate region II where, quite surprisingly, the density profile is linear in
height. A homogeneous electric field is predicted to be present in regions II and III, where the
colloids are lifted upwards against gravity. In region II, it is argued [4], the effective colloid
mass is nearly zero because there the electric field almost cancels the very gravity which
causes its existence. Van Roij [4] derives separate expressions for the various regions from the
Donnan equilibrium for non-interacting colloids, and supplements the analysis by including
the electrical (Maxwell) stress in the force balance on the particles to account for the charge
separation (a macroscopic condenser) responsible for the homogeneous electric field.

In this contribution we would like to point out that the Donnan equilibrium, without
additional assumptions, actually yields expressions for the total SD density profile and its
accompanying electric field. These expressions, which comprise the three regions referred to
above, are of interest because they present a clear physical picture of the origin and effects
of the electric field. Moreover, they are convenient ‘limiting laws’ for comparison with (and
fitting of) experimental data. Briefly, for an ideal fluid of uncharged colloids one obtains
the familiar barometric density profile as the equivalence of Van’t Hoff’s limiting law for the
osmotic pressure. For charged colloids an extension beyond the Van’t Hoff form is the Donnan
osmotic pressure which still assumes all separate species (colloids, cations and anions) to be
ideal but with the additional requirement that colloids and ions jointly satisfy electroneutrality.
This Donnan pressure is equivalent to a non-barometric density profile which, consequently,
solely rests on the ideal gas approximation plus electroneutrality. This is the simplest of all
possible models for charged particles, which nevertheless accounts for trends in experimental
data quite well [7].

The Donnan equilibrium for a homogeneous colloidal dispersion is recapitulated in
section 2, and then applied to the inhomogeneous density profile in section 2.1. Since SD
profiles from an analytical ultracentrifuge are important, if not indispensable, for a quantitative
experimental test [7], equations are also provided for the SD equilibrium and the ‘Donnan
condenser’ in a sector-shaped centrifugation cell. We also address the striking analogy between
the macroscopic Donnan condenser and the microscopic diffuse double layer of individual
colloids. Finally it is noted that the ultracentrifugation literature seems to have overlooked
the importance of the inhomogeneous Donnan equilibrium, even though the early pioneers of
analytical centrifugation reported on the possible effective mass reduction due to a gradient in
the electrical potential.

2. Homogeneous Donnan equilibrium

When particles have not yet significantly settled due to gravity or a centrifugal field we have
a homogeneous suspension of colloids with average number density ρ̄, which in the Donnan
model is in contact with a large reservoir with salt concentration cs via a semipermeable
membrane. The Debye length κ−1 in the suspension follows from

κ2 = 8πλBcs + 4πλBρ̄z, (2.1)
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where λB is the Bjerrum length (i.e. the distance at which the interaction energy between two
elementary charges equals the thermal energy kT ) and z is the number of charges on a colloidal
particle. It is convenient [4] to focus on the counter-ion concentration, instead of the colloid
concentration, relative to the external salt concentration:

ȳ = ρ̄z

2cs
. (2.2)

In terms of this dimensionless concentration ȳ, the Debye length is

κ−1 = κ−1
0√

1 + ȳ
, (2.3)

where κ−1
0 is the Debye length in the absence of any colloids, i.e. the screening length in the salt

reservoir. The Debye length measures the thickness of the diffuse ionic cloud surrounding a
colloid so there is a net charge density on a length scale comparable to κ−1. Thus the suspension
is only electronically neutral on a length scale L � κ−1 so the condition of electroneutrality
is the volume integral∫

∂V
ρ∗ dV = 0; ∂V ∼ L3 � κ−3, (2.4)

where ρ∗ is the local charge density. For monovalent cations and anions with, respectively,
concentrations c+ and c− we can also write for negatively charged colloids

ρ̄z − c+ + c− = 0, (2.5)

bearing in mind that this result presupposes an average over a length scale L � κ−1. The
chemical potentials of the ions are fixed by the chemical potential in the salt reservoir, for
non-interacting ions given by

µ = µ0 + kT ln cs (2.6)

where µ0 is a standard chemical potential. For ions in the suspension, which has an electrical
potentialψ relative to the reservoir, an electrical term has to be added to the chemical potential:

µ± = µ0 + kT ln c± ± eψ (2.7)

in which e is the elementary charge. Thus the equilibrium condition for the ions is

c± = cse
∓φ; φ = eψ

kT
, (2.8)

in which φ is the reduced Donnan potential. So the electroneutrality condition (2.5), for
a suspension volume �κ−3, yields the Donnan potential generated by the average colloid
number density:

ȳ = e−φ − e+φ

2
= −sinhφ; φ = arcsinh(−ȳ). (2.9)

In addition to the small ions, solvent molecules also equilibrate across the membrane which
results in an excess osmotic pressure in the suspension:

P

kT
= ρ̄ + c+ + c− − 2cs, (2.10)

i.e. the well-known Donnan pressure [8–12] which is equivalent to Van’t Hoff’s law for non-
interacting particles. Substitution of the Boltzmann ion distributions (2.8) in (2.10) yields

P

kT
= ρ̄ + 2cs(cosh φ − 1), (2.11)
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Figure 1. A schematic diagram of the inhomogeneous Donnan equilibrium: non-interacting
colloids are subjected to gravity, separated from a salt reservoir with salt concentration cs and
zero electrical potential ψ by a membrane M permeable only to ions and solvent. At any height x
there is equilibrium (A), between the solvent and ions in the reservoir and the dispersion in which
the colloids adopt the sedimentation-diffusion equilibrium (B), in the sense that upward diffusion
compensates the downward flux due to the net external field. The unequal distribution of charged
species produces a Donnan potential � in the dispersion which depends on the colloid density, and
therefore on x , resulting in the Donnan electric field E which counteracts gravity.

which can be rewritten, following Van Roij’s notation [4], in the dimensionless form

P∗ = Pz

2cskT
= ȳ + z(cosh φ − 1). (2.12)

Note that substitution of (2.9) yields the osmotic pressure either as a single-valued function of
the Donnan potential:

P∗ = − sinh φ + z(cosh φ − 1), (2.13)

or, using the identity cosh2 φ − sinh2 φ = 1, as a function of the average colloid density:

P∗ = ȳ + z
(√

1 + ȳ2 − 1
)
. (2.14)

The density representation is the usual one for the Donnan pressure [8–12]. However, the
φ-representation equation (2.13) is instructive as it reminds us that any gradient in osmotic
pressure must be accompanied by a gradient in potential, that is, an electric field. Both
gradients, as explained below, therefore follow from the same force balance on the colloids.

2.1. Inhomogeneous Donnan equilibrium

A pressure gradient will develop in the suspension when it is subjected to gravity. In addition
to the membrane equilibria (A in figure 1) for ions and solvent, the charged colloids now
equilibrate (B in figure 1) with the external field to produce density profiles for both colloids
and ions. It should be noted that the semipermeable Donnan membrane in figure 1 is merely a
conceptual device which can be replaced by any other constraint or force which keeps colloids
separated from a salt reservoir. In the case of sedimentation this constraint can be gravity,
separating colloids from a supernatant phase which plays the same role as the salt reservoir in
a membrane equilibrium. The colloid profile follows from the isothermal force balance:

dP

dx
= −ρmg, (2.15)
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where x is the vertical distance from the bottom of the suspension at x = 0 and mg is the weight
of a particle with mass m; here and in what follows the particle weight is always corrected for
buoyancy. In terms of the dimensionless pressure P∗ and dimensionless concentration y,

dP∗

dx
= − y

L
; L = kT

mg
. (2.16)

Here L is the gravitational length of the colloids. Integrating this differential equation for the
pressure in equation (2.14), of course with ȳ replaced by the height dependent concentration
y = y(x), yields

ln
y

y0
+ z[arcsinh y − arcsinh y0] = −(x − x0)

L
. (2.17)

Here y0 is the reduced colloid density at altitude x0, which is an explicit function of the average
density ȳ from equation (2.2) as shown in appendix A. Sinceφ = arcsinh(−y), equation (2.17)
is equivalent to the Boltzmann distribution:

y = y0 exp

[
− (x − x0)

L
+ z(φ − φ0)

]
, (2.18)

whereφ andφ0 are the Donnan potentials at, respectively, altitude x and x0. This form confirms
that the potential energy of the colloids in the inhomogeneous Donnan equilibrium is due both
to gravity and an electric field. We note here the important consequence that for colloids with
known gravitational length L, multiplying experimental concentration profiles with exp[x/L]
should yield zφ as a function of height and particle concentration. Thus in principle one can
directly measure Donnan potentials making use of gravity, provided that the valence z of the
colloids is known.

The electrical field E corresponding to a particular value of y is found as follows. The
magnitude of the field is E = −dψ/dx , or

E ′ = Ee

mg
= −L

dφ

dx
, (2.19)

where E ′ is a reduced field strength. The force balance (2.16) can therefore be rewritten as

dP∗

dφ
E ′ = y, (2.20)

which on substitution of the pressure in (2.13) yields the field strength:

E ′ = −y

zy +
√

1 + y2
. (2.21)

Since this field is the gradient of the Donnan potential it is logical to call it the Donnan electric
field. Three regimes can be distinguished in this Donnan field:

E ′ ∼




−1/(1 + z), y � 1 III,

−1/z, y � 1 and zy � 1 II,

−y, y � 1 and zy � 1 I.

(2.22)

The field is homogeneous in the first two regions, where the charge z has a significant effect on
the colloid profile; the field vanishes as E ′ ∼ y ∼ exp[−x/L] in region I where the external
salt dominates the counter-ions. Making use of the logarithmic representation [13]

arcsinh y = ln
[

y +
√

1 + y2
]
, (2.23)
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the density profiles for the three regions are found from equation (2.17) to be, apart from
integration constants,

y ∼




exp[−x/(1 + z)L], y � 1 III,

−x/zL, y � 1 and zy � 1 II,

exp[−x/L], y � 1 and zy � 1 I,

(2.24)

which are precisely the three regions identified by Van Roij [4]. For further interpretation of
the inflated gravitational length (1+z)L in region III, see appendix B. The foregoing results for
the inhomogeneous Donnan equilibrium in the gravity field are easily extended to colloids in
a centrifuge. The main difference is that now the acceleration changes in the radial direction,
producing a radial Donnan electric field. For a colloidal dispersion which rotates at an angular
frequency ω the centripetal acceleration at a distance r from the rotation axis at r = 0 equals
ω2r . Thus the force balance for the colloids is

dP

dr
= −ρmω2r, (2.25)

with m the colloid mass, again corrected for buoyancy. In terms of dimensionless pressure in
equation (2.12) we have

dP∗

dr
= − yr

λ2
; λ =

√
kT

mω2
. (2.26)

Here λ can be identified as a ‘centrifugal length’, in analogy with the gravitational length L.
Substitution of equation (2.14) and integration yields

ln
y

y0
+ z[arcsinh y − arcsinh y0] = −(r2 − r2

0 )

2λ2
, (2.27)

in which y0 is the reduced colloid density at a distance r0 from the rotation axis. The three
regimes in the density profile adopt, instead of (2.24), the form

y ∼



exp[−r2/2(1 + z)λ2] III,
−r2/2zλ2 II,
exp[−r2/2λ2] I.

(2.28)

The peculiar regime II in a rotating dispersion is now part of a parabola, instead of the linear
function in the gravity field. The Donnan electric field E = −dψ/dr is now competing with
a colloid weight mω2r instead of mg. Thus the dimensionless field strength is

E ′ = Ee

mω2r
= −λ

2

r

dφ

dr
, (2.29)

which can be used to rewrite the centrifugal force balance equation (2.25) as
dP∗

dφ
E ′ = y, (2.30)

a result identical to equation (2.20) for the gravitational force balance. Consequently the
Donnan field in a rotating colloidal dispersion has the same dimensionless form as in
equations (2.21) and (2.22) for the gravitational SD equilibrium. The absolute field strength
in the three regions is proportional to

Ee ∼



−mω2r/(1 + z) III,
−mω2r/z II,
−mω2r exp[−r2/2λ2] I.

(2.31)

The physical meaning is clear: at r = 0 there is no centripetal acceleration and therefore no
Donnan field, whereas at increasing r the apparent colloid weight increases which enhances
the colloid–counter-ion charge separation and therefore the magnitude of the electric field.
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Figure 2. A plot of the barometric (ln y) part and
the condenser part (z arcsinh y) for z = 10, with an
indication for the three regions in the density profile
distinguished in equations (2.22) and (2.23). The
parameter y is the ratio of counter-ions to external salt
ions. Note that even for this moderate z, the condenser
term dominates the larger part of the profile, though
region II is narrow.

Figure 3. Colloid density profiles according to
equation (2.17) for various values of the colloidal charge
z. Note the strong inflation of the profiles in comparison
to the Boltzmann profile for uncharged particles (z = 0).

3. Discussion

Expression (2.17) for the colloid density profile clearly identifies the two contributions to
the sedimentation–diffusion equilibrium within the Donnan approximation, namely the purely
logarithmic term (the barometric term) which would remain for non-charged particles and
the z dependent inverse hyperbolic term (the condenser term) which stems from the charge
z on the colloids (figures 2, 3). So charged colloids, as is also clear from [4], never exactly
adopt a barometric distribution, even if the colloids do not interact throughout the whole
density profile. At sufficiently high altitude the profile tends asymptotically to the barometric
distribution because at some point the colloid–counter-ion densities are so low that the external
salt dominates, effectively removing the z dependent term (though the field in region I is not
zero; see equation (2.22)). The whole profile can be seen as a fairly thin barometric distribution
that ‘floats’ on top of a z dependent condenser.

The condenser part has two interesting regions which follow from the asymptotes of the
inverse hyperbolic sine in equation (2.23), namely an exponential part (region III), with an
expanded gravitational length (1 + z)L, and region II, with a linear concentration decay. The
peculiar linear region, first identified by van Roij [4], is, as he points out, equivalent to a
purely quadratic equation of state. Indeed, substitution of P ∼ y2 in the force balance (2.16)
produces a linear sedimentation–diffusion equilibrium profile. Van Roij also noted that in this
region the electric field nearly cancels the effect of gravity, which captures the essence of the
inhomogeneousDonnan equilibrium: the weight of the colloids is almost compensated by their
own charge, producing a reduction in effective mass which strongly inflates a sedimentation–
diffusion equilibrium profile. One can also say that for (non-interacting) uncharged colloids
the SD profile measures the colloid mass, whereas for colloids with total charge q the profile
depends on the charge-to-mass ratio, namely

zL = q

m

kT

eg
. (3.1)



S4058 A P Philipse

The density profile equation (2.17) has been obtained here from the force balance
equation (2.15). Since the profile is an equilibrium distribution the total chemical potential of
the colloids, µ̃, must be independent of height:

∂

∂x
µ̃ = 0. (3.2)

In the chemical potential of the ions in (2.7) their weight does not appear, but for the much
heavier colloids, of course, we have to include their potential energy in the gravity field. Hence
for a negatively charged, ideal colloid,

µ̃ = µ0 + kT ln ρ − zeψ + mgx . (3.3)

Substitution in the equilibrium condition (3.2) yields, after rewriting to dimensionless variables,

ln y − zφ = C − x

L
. (3.4)

Taking this together with the equilibrium distributions for the two ionic species in (2.8), and
the electroneutrality condition (2.5), we have four equations which determine four unknowns,
namely the gradient in electrical potential and the gradients in concentrations of colloids,
anions and cations. The results are exactly the same as those obtained in section 2.1 from the
Donnan osmotic pressure because they rest on the same assumptions, namely ideal behaviour
plus charge neutrality.

What about the compatibility of the condenser producing the electric field with Donnan’s
electroneutrality condition? Van Roij [4] concludes that sometimes the charges of the
condenser are located in a small layer with thickness of the order of the Debye length κ−1.
First it should be noted that the very existence of charge separation is not inconsistent with
Donnan’s model. Such separation is a necessary consequence of the inhomogeneous Donnan
equilibrium: distributing particles implies distributing the electrical potential so there must
be an electric field and a corresponding (diffuse) condenser. However, the Donnan model
cannot specify with the desired spatial resolution where charges are located, because for the
electroneutrality condition,equation (2.4), the suspension has been coarse grained into volumes
�κ−3 with a certain average electrical potential, disregarding all details of the electric fields in
these volumes. Thus the fact that the condenser charges are located in a region with thickness
κ−1 does not follow from the Donnan model but does not contradict it either, just as the diffuse
double layer around a single colloids—also charge separation on a scale κ−1—is compatible
with, though certainly not a consequence of, Donnan’s electroneutrality.

The analogy between the ‘Donnan condenser’ and the microscopic electrical double layer
surrounding a colloid can be extended further: the Donnan condenser clearly has features of
a macroscopic diffuse double layer. For example, it shrinks when salt is added and expands
upon deionization. This salt effect can be easily understood from figure 2: if in the initial
homogeneous suspension the ionic strength is lowered at fixed total colloid concentration,
then ȳ = ρ̄z/2cs shifts in figure 2 to the right, and thus the whole profile expands. Also from
the condenser viewpoint there is a similarity. From classical electrochemistry [11] it is well
known that the microscopic (Gouy–Chapman) double layer resembles a flat condenser, which
for small surface potentials obeys [11]

σ = Cψ0; C = ε

4π

1

κ−1
. (3.5)

Here σ is the charge density, ψ0 the colloid surface potential and κ−1 can be interpreted as
the distance between the two plates of a condenser with capacitance C . The sedimentation–
diffusion profile can—be it very qualitatively—be seen as a huge series connection of such
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colloidal condensers. In that case the total capacitance is

1

Ctot
=

N∑
i=1

1

Ci
= 4π

ε

N∑
i=1

κ−1
i , (3.6)

where κ−1
i is the thickness of capacitor i . The length scale for the SD profile is of order

(z + 1)L; therefore the number of capacitors in the series is of order N ∼ (z + 1)L/κ−1
0 , if we

take all screening lengths equal to κ−1
0 (see, however, equation (2.3)). Hence for the Donnan

condenser we find

σ = Ctotψ0; Ctot ∼ ε

4π

1

(z + 1)L
, (3.7)

which indeed confirms that the Donnan condenser is quite similar to a colloidal condenser,
only with a much smaller capacitance, because the condenser ‘plates’ have been separated
to a very large distance. For a series connection the total potential jump remains, at least in
order of magnitude, the same as in the colloidal double layer. For the Donnan condenser the
potential difference between the plates is ψ0 ∼ E(z + 1)L which on substitution of (2.22)
yields ψ0 ∼ −kT/e = 25 mV. This is also a typical value for the potential drop around an
individual colloid. So the much smaller capacitance of the Donnan condenser leads to very
low charge densities on its ‘plates’. However, as noted by van Roij [4], it takes only very little
excess charge to lift up colloids against gravity.

Since the Donnan equilibrium and sedimentation are both classical topics of physical
chemistry, one wonders whether their combination has not been investigated earlier. Donnan
himself [8, 9] does not mention the issue. Tiselius [14], however, noted that a protein
concentration gradient will give rise to a Donnan potential gradient which opposes the
centrifugal field. He also derived the low-salt limit (region III) in equation (2.28). Bolam [10]
observed that the reduction of the effective mass with a factor z + 1 in Tiselius’s formula is
a maximum effect for very low salt concentration and that the potential gradient should be
practically eliminated at high ionic strength. No attempts were made, however, to quantify
colloid profiles as a function of salt concentration or to further investigate or quantify the electric
field. Neither were such attempts made by Svedberg and Pederson in their classical book [15],
though they refer to Tiselius and his derivation of the 1 + z mass reduction. Later reviews of
ultracentrifugation and colloid textbooks briefly mention Tiselius’s result [16, 17] or omit the
topic [11, 18, 19]. In the modern (largely biochemical) ultracentrifugation literature [20], only
very occasionally is reference made to the ‘Donnan effect’ in the sedimentation equilibrium,
be it only a reference to gradients in salt and polyelectrolyte concentration, and not to the
accompanying gradient in electrical potential [21]. So it seems that the explicit notion of a
potential gradient has somehow disappeared in the literature on the sedimentation equilibrium
of polyelectrolytes. In this respect it is interesting to note that the proof of the monodispersity
of haemoglobin molecules by Svedberg is an often quoted starting point for quantitative
ultracentrifugation. However, the same protein was used by Nichols [10, 22], in a study
almost never quoted, to estimate the effect of an electrical potential gradient by comparing
measured density profiles to calculations based on a molecular weight M = 68 500 g mol−1

of haemoglobin. Even if the calculations are redone with the correct molecular mass [23] of
M = 64 500 g mol−1, a significant discrepancy with Nichols’ measurements remains, which
very likely is due to the Donnan electric field.

4. Conclusions and outlook

The sedimentation–diffusion (SD) equilibrium of charged colloids, and the accompanying
macroscopic electric field in a homogeneous or radial centrifugal field, can be treated
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analytically within the Donnan approximation, i.e. for non-interacting colloids and ions which
together only have to satisfy electroneutrality. The formula for the colloid density profile yields
the correct low-salt limit, a strongly inflated exponent already identified by Tiselius [12], the
familiar barometric exponential at high ionic strength and the peculiar intermediate linear
density profile found by van Roij [4]. The electric field is a necessary consequence of
an inhomogeneous Donnan equilibrium, though within the Donnan approximation it is not
possible to indicate where the ‘condenser charges’ are located with the required resolution on
the length scale of the Debye screening length. The ‘Donnan condenser’, which in the gravity
field can even be on the centimetre scale, resembles a huge series connection of colloidal
capacitors and can be seen as a macroscopic consequence of microscopic electrical double
layers.

The density profile equation (2.17) may be useful in practice for estimating the
colloid charge z by fitting an experimental density profile. Particularly intriguing is the
possibility of extracting Donnan potentials directly from the profile as mentioned below
equation (2.18). Since within the Donnan approximation the colloid size and shape are
irrelevant, equation (2.17) may apply to inorganic colloidal spheres, rods or (clay) platelets,
as well as charged biomolecules. In particular, at a pH far away from the isoelectric point the
contribution of counter-ions may be large enough to probe the whole profile equation (2.17) at
concentrations low enough to satisfy at all altitudes the ideal gas approximation. Clearly the
reported routine practice [16] for determining molecular weights of polyelectrolytes swamped
with salt suppresses information on the charge-to-mass ratio of the macromolecules under
study. Finally, it should be noted that the Donnan equilibrium in its simplest form may be a
poor description of charged colloids in the more concentrated parts of a sedimentation profile.
In that case equation (2.17) is anyway useful for assessing the presence of non-idealities in
experimental density profiles, and for providing a starting point for further theoretical analysis
beyond the Donnan approximation.
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Appendix A. Integration constants

The integration constant in (2.17) follows from mass conservation:∫ ∞

x0

ρ(x) dx = Ntot

A
. (A.1)

Here Ntot is the total number of colloids above a certain altitude x0 in a column with cross
sectional area A. The upper limit of the integral, actually the height H of the vessel, is taken to
be infinite, assuming that H is large enough for the colloid density ρ(x) to completely decay,
i.e. H � zL. In terms of the dimensionless concentration y,∫ ∞

x0

y dx = Ntot

A

z

2cs
= ȳ H, (A.2)
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in which ȳ is average density, or the density defined in (2.2) of the initially homogeneous
suspension in a vessel with height H . The density profile (2.17) is the solution of

1

y
dy + z

dy√
1 + y2

= −dx

L
. (A.3)

Taking y0 to be the concentration at x0 it follows that

1

L

∫ ∞

x0

y dx = −
∫ 0

y0

dy − z
∫ 0

y0

y dy√
1 + y2

= y0 − z + z
√

1 + y2
0 . (A.4)

Thus the full density profile is

ln
y

y0
+ z[arcsinh y − arcsinh y0] = −(x − x0)

L
, (A.5)

where y0 is, according to (A.2) and (A.4), determined by

y0 − z + z
√

1 + y2
0 = ȳ H

L
, (A.6)

with the solutions

y0 =




ȳH

L
, z = 0( ȳH

L + 1
)2 − 1

2
( ȳH

L + 1
) , z = 1

β

z2 − 1

√
1 − (z2 − 1)(z2 − β2)

β2
− β

z2 − 1
, z > 1

(A.7)

where β = ȳH
L + z. For highly charged colloids (z � 1) in a sufficiently large vessel,

y0 ∼ ȳ H

zL
, for H � zL

ȳ
. (A.8)

Here y0 � 1, so x0 is located in region III. The limiting result (A.8), of course, also directly
follows from (A.6) taking y0 � 1. The value of y0 ∼ ȳH/L for the case x0 is located in the
barometric region and follows from the limit z → 0 in equation (A.6). For x0 = 0, y0 is the
concentration at the bottom of the profile and ȳ is the average for the total initial suspension.
If for this suspension the external salt strength cs and the average colloid number density ρ̄ are
also known (see equation (2.2)), then the colloid charge z is the only free parameter left for a
fit of experimental data to (A.5).

Appendix B. Polydispersity

The significant reduction of the effective colloid mass by the term 1 + z in region III can also
be interpreted as a polydispersity effect. Consider an ideal mixture of j = 0, 1, . . . , N species
of uncharged particles which produce a sum of independent force balances as in (2.15):

N∑
j=0

dPj

dx
= −

N∑
j=0

ρ j m j g; Pj = ρ j kT . (B.1)

Integration yields the exponential distribution of the total particle number density:
N∑

j=0

ρ j(x) =
N∑

j=0

ρ j (x0) exp

[
− (x − x0)

〈L〉
]
, (B.2)
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with a gravitational length determined by the number-averaged particle mass:

〈L〉 = kT

〈m〉g , (B.3)

where the brackets denote an average over the size distribution. For a two-component mixture
of large (l) and small (s) particles,

〈L〉 = (1 + α)kT

(m l + αms)g
∼ (1 + α)kT

m lg
. (B.4)

Here α is the ratio of the total numbers of small and large particles. Thus the inflation of the
average gravitational length with a factor 1 + α is simply due to the almost weightless, small
particles added to the large colloids. The Donnan osmotic pressure increases with the same
factor and the reduced mass of the large particles (the colloids) obtained from this pressure
is ml/1 + α. However, to obtain this reduced mass from sedimentation, equation (B.2) is
inconvenient, as one measures only the density profile of the large particles (colloids) and not
the total number densities as required by (B.2). Now suppose that each large particle is always
accompanied by the same number of small satellite particles. Then the concentration ratio is
independent of altitude x , in which case

ρL (x) + ρs(x) = ρL (x)(1 + α), (B.5)

with the result that (B.2) for the two-component mixture simplifies to the colloid density profile:

ρL (x) = ρL (x0) exp

[
− x

(1 + α)L l

]
. (B.6)

Of course, this is region III in (2.24) and (B.5) is Donnan’s electroneutrality condition (2.5)
for charged colloids and their α counter-ions in the limit of zero external salt.
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